Monitoring of Alligator Gar (Atractosteus spatula) Reintroduced into Merwin Preserve

Nathan Grider - University of Illinois, Springfield Rob Hilsabeck - Illinois Department of Natural Resources

Status

- Populations have declined
- Vulnerable to extinction
- Reintroduction in AL, AR, FL, KY, LA, MS, MO, OK, TN, and TX

River Monsters

Jeremy Wade and Mark Spitzer with a $7 \mathrm{ft}, 111 \mathrm{lb}$ alligator gar
http://colourofautumn1216.blogspot.com/2010/06/river-monsters.html

History In Illinois

- Last vouchered record from 1966
- Delisted in 1994 (extirpated)
- Reintroduction efforts began in 2009 by IDNR

Why Reintroduce Them?

- Increase biodiversity - resist invasion
- Apex predators provide top-down control
- May control "rough fish" and invasive species
- May help prevent stunting of sportfish
- Popular food fish
- Angling and bowfishing

Big Fish Bowfishing Texasm

Merwin Preserve

 (Spunky Bottoms)- Approximately 590 ha
- 100 alligator gar were tagged with passive integrated transponders (PIT), released 9/29/2011

- Average length was 538 mm and weight 886 g

Objectives

1) Measure growth rate and compare to data from the southern range
2) Determine condition (fitness) and compare to data from the southern range
3) Investigate prey selection and potential use as a management tool
4) Compare sampling methods used to capture alligator gar

Methods

Sampling

- Sampled May - October = six events
- Sample event = two days and one night of extensive gear effort

Gears

- Modified multifilament gill nets - 3" bar mesh, dyed black
- Experimental monofilament gill nets
- Trap nets, 1.5" mesh
- Mini fyke nets
- DC Electrofishing

Diet Analysis

- Gastric lavage
- Strauss (1979) index used to determine prey selection
- Compares abundance of prey items in diet to abundance in environment
-1 = avoidance/inaccessibility,
0 = no selection (opportunistic)
+1 = selection

Results

Catch Frequency, All Gears, All months

Length and Mass Gain

Growth Rates and Water Temperature

Growth Rate: Illinois and Louisiana

Length Gain: Illinois and Louisiana

Body Condition: Illinois and Louisiana

Diets

Estimating Prey Length from Remains

- Knowing prey size allows us to estimate predator impact
- How do we estimate prey length from diet remains?
- Use linear relationship of eye diameter or caudal peduncle to total length (Scharf et al. 1997).

Prey Size selection

$$
\begin{gathered}
y=0.0831 x+0.2483 \\
R^{2}=0.9523 \\
\text { Mean } 20.3 \pm 1.1
\end{gathered}
$$

$$
y=0.0324 x+4.1315
$$

$$
R^{2}=0.7872
$$

Mean 12.0 ± 1.0

- Eye Diameter
- Caudal Peduncle
_L Linear (Eye Diameter)
——Linear (Caudal Peduncle)

Caudal Peduncle from Alligator Gar
Diet

Caudal Peduncle from Shortnose Gar Diet

41\% of Predators Length

Diet Contents Over Time

Alligator Gar Diets Over Time

Shortnose Gar Diets Over Time

Food Selection Index

$\begin{array}{r} 1 \\ 0 \end{array}$			
0.8			
0.6			
0.4			
00.2			
$\checkmark \quad-0.2$			
$\checkmark \quad-0.4$			
-0.4			
-0.8			
	May/June	July/August	September/October
-Ameiurus	-0.0649	-0.078	-0.1688
-Bigmouth Buffalo	-0.0119	-0.0395	-0.063
-Common Carp	-0.2727	-0.3192	-0.529
- Gizzard Shad	0.68515	0.74139	-0.0504
-Largemouth Bass	-0.1862	-0.0968	-0.0554
-Lepomis	-0.341	-0.1774	-0.063
-Pomoxis	-0.0586	-0.0305	-0.0705

+1 = Selection

$0=$ No selection (opportunistic)
-1 = Avoidance/inaccessibility

Prey Abundance Over Time

July \& August Electrofishing CPUE

September \& October Electrofishing CPUE

Recapture Success and Mortality

Alligator Gar: Gear Mortality

- May - August:

Mortality = 50\%

- September - October

Mortality = 38\%

Discussion

Objective 1 \& 2

- No significant difference in growth rate or condition compared to Louisiana
- Factors that effect growth rate: salinity, temp., prey, and habitat
Objective 3
- No sportfish found in diet.
- Did they eat a few? Probably.
- Selection or opportunistic feeding on gizzard shad?
"Optimal Foraging Theory"

Some Diet Predictions

Abundance of potential prey items at Merwin Preserve within the preferred prey size range ($200-320 \mathrm{~mm}$) of $137-183 \mathrm{~cm}$ alligator gar described by Goodyear (1967).

Discussion

Objective 4

- Trap nets and modified gill nets worked best
- Modified gill nets produced less bycatch, but higher mortality
- Sampling in September \& October is recommended

DC Electrofishing

- 3,500 watt generator (small boat) = no Alligator Gar
- 5,000 watt generator (big boat) $=8.5$ hours produced 1 Alligator Gar @ 30 cycles/sec \& 7 amps

What's Next?

- Continue reintroduction and monitoring
- Consider further harvest restrictions
- Public education and outreach
- Maybe develop catch and releasing fishing opportunities in dedicated waters
Could help fund continued conservation work!

Acknowledgments

Illinois Department of Natural Resources
Rob Hilsabeck
Trent Thomas
Doug Carney
Matt O'Hara
Rich Lewis
Karen Miller
Todd Rettig
Nate Goetten

Illinois Natural History Survey
Dr. Leon Hinz
Nerissa Michaels
Levi Solomon
John Wisher

The Nature Conservancy
Tharran Hobson

Dr. Michael Lemke - Thesis Advisor

Literature Cited

Brinkman, E. L. 2008. Contributions to the life history of alligator gar (Atractosteus spatula, lacepede), in Oklahoma. Master's Thesis, Oklahoma State University. Oklahoma City, Oklahoma

Garcia De Leon, F. J., L. Gonzalez-Garcia, L. M. Herrera-Castillo, K. O. Winemiller, \& A. BandaValdes. 2001. Ecology of the alligator gar, Atractosteus spatula, in the Vicente Guerrero Reservoir, Tamaulipas, Mexico . The Southwestern Naturalist 46(2):151-157

Ianni, R. C. 2011. Monitoring diets and growth rates of native predatory fish stocked to suppress non-native tilapia. Master's Thesis, Nicholls State University. Thibodaux, Louisiana

Scharf, F. S., J. A. Buckel, F. Juanes, \& D. O. Conover. 1997. Estimating piscine prey size from partial remains: Testing for shifts in foraging mode by juvenile bluefish. Environmental Biology of Fishes 49: 377-388

Strauss, R. E. 1979. Reliability estimates for Ivlev's Electivity Index, the forage ratio, and a proposed linear index of food selection. Transactions of the American Fisheries Society 108: 344-352

