CyanoHAB Remediation Case Study: Campus Lake

Dr. Marj Brooks

is Lake Management Association 32nd Annual Conference March 30th – April 1st

31 March 2017

Basic facts about Campus Lake

htains 40 acre-feet or 4,272,320 gallons of water al volume refreshes ~1.75 years e shoreline under consideration 2,900 feet long

npus lake has an *income* of crients from 23 storm drains

Iso has a *savings account* of caying algae—wet compost that tilizes the harmful cyanobacteria

Nutrient hotspots around Campus Lake

0 Data

Brooks et al. 2013. Phase II Implementation: Report for Campus Lake, Jackson Illinois, Illinois Environmental Protection Agency. Illinois Clean Lakes Program

al 2013 compared to Muchmore et al. 2004. Phase I diagnostic / feasibility study of Campus Lake, Report to the

3 Data

	Summer (µg/L)	Late Fall (µg/L)	Limit between "Low" to "Moderate" nutrients as NO ₃ , PO ₄ , or NH ₃ (µg/L)	How many multiples of limit
Nitrate (NO ₃)	500	11,000	1,356	8
Phosphate (PO ₄)	521	1,825	31	58
Ammonia (NH₃)	900	250	119	8

In general, the nutrient levels are ~10 to ~60 times higher than concentrations that support moderate algal growth in lakes.

L Sediment Depths

nents are not deep, however, tation build up is significant.

map does not show ying algae, but a conservative hate is a one-foot depth by foot buildup along the shore and the entire lake.

2015 Identified savings account of wet compost

>partially decomposed filamentous al

Stored nutrients in decaying algae and estimated time to naturally flush Campus Lake

Scenarios	Best	Moderate	Worst
	1	2	3

ed cubic feet of algae / oot of shoreline

Southern Illinois University invested 400,000 in lowering lake level and dredging detritu

Detrital algae deposited at shoreline buoyant starch & lipid reserves

Inconsolidated high organic detritus above eticulated low-nutrient mud flat Clay liner underlies lake

1.2.16

Where did the spoils go?

xt steps: Inhibit CyanoHAB growth

erate

n the water column, Lake contains 40 x more Fe and Ca han required to bind all PO₄

out that equestration is easonal

sind PO₄ with alum

Cool

One calorie cools 1 gram of H₂O by 1°C

- 540 calories of heat loss gram H₂0 evaporation
- Heat loss / one liter is can co by 3 °C
- 3 °C cooling from 27 to 24 °C slow cyanobacterial growth k

Odli Cano

xt steps: Inhibit CyanoHAB growth

erate

eek, 16:8 h light:dark toperiod, constant 30 °C

ration inhibits N₂ fixation

Wetlands & Swimming Are

- 2 x 9 m wetland can remove
- 2 kg NO₃ per day
- 125 kg of organic carbon → future

stainable Eco-Recreation Designed by Studen

<u>le Projects:</u>

tain maze as an obstacle course for paddle boarders eline swimming pool with wetland water treatment

ts:

wable Energy

-disciplinary Experiential Education

er Building. Tiered funding tied to meeting deadlines, outreach, team-buildi uce sustainable answers to a worldwide environmental problem

Patents and Products \rightarrow Think Burton snowboards.

