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Nitrate (𝐍𝐍𝐍𝐍𝟑𝟑−)
• 𝐍𝐍𝐍𝐍𝟑𝟑− is sourced from fertilizers whose 

usage has increased over the past 80 
years[1]

• With ever growing food demands, we can 
infer that 𝐍𝐍𝐍𝐍𝟑𝟑− usage will continue to 
increase. 

• High concentrations of 𝐍𝐍𝐍𝐍𝟑𝟑− in surface 
waters are exacerbated by tile drainage, 
preventing subsurface flow and 𝐍𝐍𝐍𝐍𝟑𝟑−
removal[2]



𝐍𝐍𝐍𝐍𝟑𝟑−affect on Ecosystems

• Excess anthropogenic 𝐍𝐍𝐍𝐍𝟑𝟑−in surface 
waters are responsible for resulting in 
algal blooms leading hypoxia[3-6]

• The 16,000 km2 Gulf of Mexico hypoxic 
zone is primarily attributed to 
anthropogenic 𝐍𝐍𝐍𝐍𝟑𝟑− sourced from the 
Midwestern United States[7-9]

• The Illinois River contributes 19% of the 
total 𝐍𝐍𝐍𝐍𝟑𝟑− load to the Gulf of Mexico 
hypoxic zone[3-6]

• These hypoxic zones deteriorate 
ecosystems, leading to fish kills and 
benthic organism mortality[9-10]



𝐍𝐍𝐍𝐍𝟑𝟑−affect on Human Health

• National and Illinois EPA regard 𝐍𝐍𝐍𝐍𝟑𝟑− as a 
Primary National Drinking Standard[11-12]

• 𝐍𝐍𝐍𝐍𝟑𝟑− limit for both National and Illinois EPA is 10 
mgL-1 as (𝐍𝐍𝐍𝐍𝟑𝟑−-N)[11-12]

• Consumption of excess levels of 𝐍𝐍𝐍𝐍𝟑𝟑− can lead 
to:

• Methemoglobinemia in infants and young 
children[13]

• The formation of nitrosamines attributed to 
gastric cancer[14]



Hyporheic Zone (HZ) role in 𝐍𝐍𝐍𝐍𝟑𝟑−cycling
• HZ is an important area of surface-

subsurface interaction within 
streams & rivers[15-22]

• Within the HZ denitrification can 
take place due to microorganisms 
who break 𝐍𝐍𝐍𝐍𝟑𝟑− down into 
𝐍𝐍𝟐𝟐𝐎𝐎 𝐠𝐠 and 𝐍𝐍𝟐𝟐 𝐠𝐠 [23-24]

• This reaction is anaerobic or low 
dissolved oxygen (DO)[23]

• Requires high amounts of dissolved 
organic matter (DOM)[23]

• Furthermore plant uptake can 
occur predominantly from benthic 
stream algae[25-26] 



Storms Impact on 𝐍𝐍𝐍𝐍𝟑𝟑− in streams 
• During storm events, stream stage 

increases as does the area of surface-
subsurface exchange and the volume 
of the HZ[27-29]

• DOC remains constant[28]

• DO increases[27]

• However, it remains to be studied 
how 𝐍𝐍𝐍𝐍𝟑𝟑− behaves during elevated 
stream stage and whether or not 
stream banks play a crucial role in 
𝐍𝐍𝐍𝐍𝟑𝟑− removal and retention. 

• Using Chloride (𝐂𝐂𝐂𝐂−), as a 
conservative tracer, we will compare 
its transport during storm events to 
that of 𝐍𝐍𝐍𝐍𝟑𝟑−.



Objective
• If we measure that the behavior of NO3

−

and Cl− concentrations during storm 
events are similar, then we can infer 
that transport during this time is 
conservative. 

• If NO3
− and Cl− transport timing and 

amplitude of change differs may 
indicate that denitrification and uptake 
during storm events.



Questions
1. How do concentrations of NO3

− and Cl− change in 
response to storm events within the stream, hyporheic 
zone, and bank storage?

2. Are NO3
− and Cl− transported similarly in a low-gradient 

system?

3. Are NO3
− and Cl− transported similarly during different 

storm events?



Methodology
Sample Preparation

Weather Monitoring

Field Sample Collection

Ion Chromatograph Analysis

Mixing Model

Well Sampling Water Parameters

using Weather.gov in to monitor weather 
events

Take place over 24-hour storm event

Occur every 2-hours during 
event



Study Site

• T3 study site is a tributary of Evergreen Lake 
Watershed ELW) (105.45 km2)
• ELW primary land cover is cultivated crops of 

77.6%
• ELW secondary land cover is developed land of 

13.3 %
• T3 stream is a modified low-gradient stream fed by 

tile drainage.



Study Site
• Silt-Clay layer is 1 

meter in depth 
composed of organic-
rich alluvium.

• Unconsolidated sand-
gravel layer ~ 1.25 
meters in depth.

• Compacted glacial till 
sits beneath.

• Stream bed composed 
of sandy-gravel-silt-
clay layer ~50 cm in 
depth. 



Field Sampling
• Sampling from 10, 30, and 

50 cm depths in the stream 
and vertical HZ zone. 

• 14 samples will be 
collected in total per 
rotation.
• monitoring of pH, 

temperature, DO, and 
specific conductivity.

• Sample rotation will take 
place every 2 hours, with 
maximum monitoring 
duration lasting 24 hours.



Analysis 

Will utilize a two-end member mixing model between Surface Water (SW) and 
Ground Waters (GW) to infer Stream Bank Concentrations of 𝐂𝐂𝐂𝐂− [30] in order to 

determine 𝐍𝐍𝐍𝐍𝟑𝟑− mixing [30] 

All samples will be analyzed in the Laboratory for Environmental Analysis 
(LEA) on a Dionex Ion Chromatograph, primarily measuring concentrations 

of 𝐍𝐍𝐍𝐍𝟑𝟑− and 𝐂𝐂𝐂𝐂−

%𝑆𝑆𝑆𝑆 =
(𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻 − 𝐶𝐶𝐶𝐶𝑔𝑔)
(𝐶𝐶𝐶𝐶𝑆𝑆 − 𝐶𝐶𝐶𝐶𝑔𝑔)

NO3 − N = %SW ∗ Ns − Ng + Ng



Expected Results
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