

Applied Perspectives Regarding Nutrient Pollution and Internal Loading Reductions in Waterways

Emily Reed Integrated Lakes Management

Applied Perspectives Regarding Nutrient Pollution and Internal Loading Reductions in Waterways

Causes of nutrient pollution

Consequences of nutrient pollution

Strategies for reducing internal loading

Maintaining high water quality

Aging in **natural lakes**

- 1000's of years from oligotrophic to mesotrophic
- 100's of years from mesotrophic to eutrophic

Aging in manmade lakes

• 10's of years from oligotrophic to eutrophic/hypereutrophic

WHAT HAPPENS IN YOUR YARD OFTEN ENDS UP IN OUR LAKES AND RIVERS

One bushel of grass clippings can create 30 to 50 pounds of algae in the nearest lake or river.

source: North Central Wisconsin Storm Water Coalition and a Northeast Wisconsin Storm Water Consortium

Consequences of Nutrient Pollution

Consequences of Nutrient Pollution

lakes of differing status. 1997.

Consequences of Nutrient Pollution

By Dan DeRoos | August 14, 2019 at 1:49 PM EDT - Updated August 14 at 6:25 PM

the lake's southwest region, where algae tends to accumulate. Image: MERIS/NASA, processed by

Sediment forebay to reduce dredging costs and lower impact

1. Reduce Nutrients in Sediment

Relatively inexpensive

- Hard to scale up

- Material disposal

Method	Pro	Con
Dredging	Effective, Removes material, "Reset", Improve habitat	Expensive, High impact, Permitting
Aeration	Aesthetics, Low impact, Relatively inexpensive	Maintenance, Energy costs, Sediment still present
Bacteria and Enzymes	Low impact, Cost- effective	Mixed results, Site specific
Bioremediation	Aesthetics	Time, Material disposal, Site specific
Nutrient Inactivation	Low Impact, Effective	Sediment still present

1. Reduce Nutrients in Sediment

2. Reduce Nutrients in Water

- Nutrient Inactivation

Pros

- Low-impact
- Effective

Cons

- Cost
- Environmental

Maintaining High Water Quality

Strategies for reducing internal loading

Consequences of nutrient pollution

Maintaining high water quality

Thank you!

ereed@ilmenvironments.com