Evaluating Alternative Sampling Designs in Inland Freshwater Lentic Systems

George C. Balto
Sarah M. King
Jeffrey A. Stein

University of Illinois, Urbana-Champaign

Sport Fish Ecology Lab

Fishing Regulations

 Regulations In Effect Panfish species include bluegill, pumpkinseed, yelle Parch, white and black crappie, warmouth, gree perch, white anespotted sunfishDaily Bag Limit
A total of 15 panfish but no
more than 5 of any one species
Effective April 1, 2016

Paris Twin East Lake Fixed Site Design

Stratified Random Site Design

Strata \#1 Sample Sites

00

Strata \#2 Sample Sites

Strata \#3 Sample Sites

Research Questions

Bias/Precision of Designs

1
Identify the differences in biannual sport fish population assessments using a fixed, random, hybrid, and stratified random sample site designs in small - medium sized midwestern lakes and impoundments

Research Questions

Bias/Precision of Designs

1
Identify the differences in biannual sport fish population assessments using a fixed, random, hybrid, and stratified random sample site designs in small - medium sized midwestern lakes and impoundments

Efficiency of Designs

Determine the optimum number of sampling events needed to obtain parameter estimates that represent the sport fish community

Sampling Designs

Fixed Random
Hybrid

Methods

Side-Scan Sonar

Obtain habitat information of focal areas

Process

Create sediment/structure \& bathymetric maps

Sampling

PDCEF in Spring \& Fall 2021

Analysis
Resampling method
simulations

Research Questions

Bias/Precision of Designs

1
Identify the differences in biannual sport fish population assessments using a fixed, random, hybrid, and stratified random sample site designs in small - medium sized midwestern lakes and impoundments

Efficiency of Designs

Determine the optimum number of sampling events needed to obtain
parameter estimates that represent the sport fish community

\% Relative Bias of Designs

\% Relative Bias of Designs

F: Fixed
H: Hybrid (1 Fixed, 2 Random)
R: Simple Random
SR: Stratified Random

Research Questions

Bias/Precision of Designs

Identify the differences in biannual sport fish population assessments using a fixed, random, hybrid, and stratified random sample site designs in small - medium sized midwestern lakes and impoundments

Efficiency of Designs

Determine the optimum number of sampling events needed to obtain parameter estimates that represent the sport fish community

CPUE Variance of Bias
Estimates by Effort

Next Steps

Bias/Precision	CPUE	W_{r}	PSD
Homer	$\boxed{\checkmark}$		
Walnut			
Paris East			
Paris West			

Efficiency	CPUE	W $_{r}$	PSD
Homer	$\boxed{\checkmark}$		
Walnut			
Paris East			
Paris West			

Acknowledgements

ILLINOIS

Prairie Research Institute
 UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Thank You

Questions?

gbalto2@illinois.edu

Sport Fish Ecology Lab

Homer Lake

Fixed Sites: A, B, C

- A + 2 random transects
- B + 2 random transects
- C + 2 random transects
$-\mathrm{B}+\mathrm{C}+1$ random transect

