Illinois River Turbidity Response to Reduced Vessel Traffic

Taylor Bookout¹, Kathi Jo Jankowski², James Lamer¹ 2/15/2022

Illinois Natural History Survey, Havana, Illinois² USGS UMESC, La Crosse, Wisconsin

US Army Corps of Engineers

1

Illinois Natural History Survey Prairie research institute

ILLINOIS

Outline

Background

Research Question and Methods

Results Longitudinal Patterns Lateral Patterns Temporal Patterns

Discussion and Conclusions

Illinois River Waterway

- Connects Lake Michigan to Mississippi River
- Lock and dams constructed in the 1930s to allow navigation

Issues

Dams can create lake-like conditions (lacustrine)

Alter flow regime

ILLINOIS RIVER NEAR HAVANA Universal Time (UTC) 3Z 37 37 Apr 18 Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 24 Apr 25 Apr 26 Apr 27 Apr 28 Apr 29 Apr 30 May 1 May 2 21 atest observed value: 11.76 ft at 9:45 P 20 CDT 24-Apr-2020. Flood Stage is 14 ft 19 18 Moderate: 17.0 17 16 Stage (ft) 15 Minor: 14 14 12 11.6 ft 11 10 9 Sat Sun Mon Tue Wed Sat Sun Mon Tue Wed Thu Fri Thu Fri Fri Apr 17 Apr 18 Apr 19 Apr 20 Apr 21 Apr 22 Apr 23 Apr 24 Apr 25 Apr 26 Apr 27 Apr 28 Apr 29 Apr 30 May 1 Site Time (CDT) ----- Graph Created (10:37PM Apr 24, 2020) ---- Observed ---- Forecast (issued 7:20PM Apr 24) HAVI2(plotting HGIRG) "Gage 0" Datum: 424.4' Observations courtesy of USACE PLAN Draft

CROSS SECTION

(Bhowmik 1998)

Implications

Higher turbidity = Lower water clarity \rightarrow

Lower productivity & Suppressed aquatic vegetation

Increased bed load & sediment transport

Lock Closure

Locks Closed July-October 2020 for repairs (Dresden, Marseilles, Starved Rock, Peoria, La Grange) Collect pre- and post-data to see effects commercial traffic has on river

Research Question

Does vessel traffic have an overall impact on turbidity?

Longitudinal patterns in response

Lateral patterns in response

Methods

<u>Turbidity</u> Collect at all fish sampling sites

SRS, 2019, (840) 2020, (1359) 2021, (1167)*

USGS fixed sondes

Turbidity, discharge 15-min timeseries data 2019-2021 (14,000/year)

*Still being processed

Longitudinal vs Lateral

Methods: Analysis

Use generalized additive mixed models to apply random effect and account for non-normal data

Use discharge as fixed effect variable

Discharge (cfs)

Was Vessel Traffic Reduced?

Trends: longitudinal turbidity (raw)

Trends: longitudinal substrate

Downstream

Trends: Lateral turbidity

Predicted Main Channel Turbidity

0

Jan

Apr

Jul

Date

Oct

Joliet USGS sonde

Joliet Turbidity vs Discharge 2019

Using mean annual discharge to predict values

Turbidity is lower during 2020 Lock Closure event

gamm4(ysi.21~s(flow)+year,data=JTF1921)

Florence USGS son de Florence Turbidity vs Flow 2019

Turbidity is lower during 2020 Lock Closure event

gamm4(ysi~s(flow)+year,data=FTF1921)

Conclusions and Future

There appears to be a reduction in turbidity with reduced vessel traffic

Pool dependent based on geomorphological differences

Strata dependent based on connectivity and disturbance

Future

Model selection to determine model of best fit

Information can be used to inform mitigation or restoration

Feel free to contact me with questions or comments at:

taylorbookout20@gmail.com or tbookout@illinois.edu

Closure Dates

Pool	Dam Location (river km)	Closure Period (2020)
Dresden	436.9	July 1- Oct 29
Marseilles	397.5	July 1- Oct 29
Starved Rock	371.8	July 1- Oct 29
Peoria	253.8	July 1- Sept 30
La Grange	129.1	July 1- Oct 13
Alton	Х	Х

Turbidity vs Discharge

2019-2021 Turbidity vs Flow by Strata

