Diurnal and Seasonal Variation in Groundwater Nitrate-N Concentration in a Saturated Buffer Zone

Why do we care about groundwater nitrate?

- Enters system by fertilization of crops
- Concentrations above 10mg/L are considered unsafe (EPA)
- Downstream nitrate transport drives eutrophication

Saturated Buffer Zones can help

- Saturated Buffer Zones are known to facilitate nitrogen cycle transformations
- 2 mechanisms have been identified
 - Denitrification
 - Assimilation

The Nitrogen Cycle

- Denitrification (in red)
- Assimilation (in green)
- These processes are influenced by environmental factors
- Temporal variation on the seasonal and diurnal scales may be present

Vegetation Uptake

NO₃ uptake rate in soybean light vs. dark

Picture of study site

- Studies show nitrate uptake in plants to vary with photoperiod
- Diurnal variation may be observable in groundwater

Denitrification

- Studies show denitrification to vary by temperature on a threshold
- Experiments performed under laboratory conditions demonstrate biologic denitrification to decrease abruptly at 5°C to 10°C (Ribas et al., 2015; Stanford et al., 1975).
- From 15°C to 35°C the coefficient of denitrification rate is 2. From 35°C to 45°C denitrification rate does not change (Stanford et al., 1975).

Data obtained from (Ribas et al., 2015)

Question

Does riparian zone shallow groundwater NO₃ concentration vary temporally?

- 1) Does NO₃-N concentration vary over a 24-hour period in each season?
- 2) Does time of maximum and minimum NO₃-N concentration vary seasonally?
- 3) Does mean daily NO₃-N concentration vary seasonally?
- 4) Does the magnitude of mean difference between daily maximum and minimum NO₃-N concentration vary seasonally?

Methods

- 24hr sampling event weekly for a year -> samples taken out of well screened at 1.5m (5ft)
- DIONEX ICS-1100 Ion Chromatography to quantify NO₃⁻-N and Cl⁻
- Collection of air/water temperature, dissolved oxygen, light intensity, and water table height data
- Data analysis by a t-Tests and Pearson Correlation

T3 wells and autosampler

Results and Discussion

Daily NO_3^- -N concentration by season. Statistically significant difference between $\mu_{daily\,[NO3^--N]}$ indicated by A and B.

Daily maximum and minimum NO_3^--N concentrations for each season. Within each season $\mu_{max\ [NO3\ -N]}$ and $\mu_{min\ [NO3\ -N]}$ are statistically significantly different.

Frequency of NO₃⁻-N concentration trends by season.

Daily NO_3^- -N concentration by season. Statistically significant difference between μ_{daily} $_{[NO3^--N]}^-$ indicated by * and \diamond .

Increase trend

Frequency of NO₃⁻-N concentration trends by season.

The increase trend is:

- Most frequent in the spring and summer
- Least frequent in fall
- Explained in 3 ways

Explanation 1: Evapotranspiration

- Concentration of solute by evapotranspiration
- Data does not support, as chloride does not increase in parallel to nitrate

Explanation 2: Nitrate Plume

 Nitrate plume could have passed through the saturated buffer from the agricultural land use upgradient

Explanation 3: Nitrification

Diurnal sinusoidal trend

Effect of light intensity on the diurnal changes in net NO₃⁻ uptake rate (J NO₃⁻) in 20 day old soybean plants (Delhon et al., 1996).

Histogram of maximum and minimum NO_3^--N concentration time-of-day for diurnal pattern events (**hour 1 = 1:00am**)

Decrease Trends

- Decrease trends are infrequent
- Nitrate and chloride decrease in parallel
- Sampling events occurred after recharge events

Frequency of NO₃⁻-N concentration trends by season.

- Majority of differences are <1mg/L
- Magnitude of difference over 24-hours may be physically limited by groundwater movement
- Biologically mediated reactions may have similar reaction rates

2.5 NO₃-N Difference (mg/L) NO₃-N Difference (mg/L) Air Temperature (°C) Water Temperature (°C) 3.0 2.5 2.5 NO₃-N Difference (mg/L) NO₃-N Difference (mg/L) 10000 15000 20000 25000 30000 2.0 Average Solar Intensity (Lux) Dissolved Oxygen (mg/L) 2.5 NO₃-N Difference (mg/L) NO₃-N Difference (mg/L) 0.0 Water Column Height (mm) Water Temperature Difference (°C) Sinusoidal Trend - Fall Increase Trend - Fall Increase Trend - Winter Sinusoidal Trend - Winter Sinusoidal Trend - Spring Increase Trend - Spring Decrease Trend - Spring Increase Trend - Summer Decrease Trend - Summer Sinusoidal Trend - Summer

Environmental factor correlations

- Grouped as all data, increase/decrease trend days, and diurnal sinusoidal trend days
- No significant correlations

Conclusions

- Seasonal and diurnal changes in NO₃-N concentration exist
- Measurable differences occur throughout the year
- Vegetation uptake is measurable
- Water table location matters
- Future work should focus on water table variation and stable isotope methods for nitrate source and fate (δ^{18} O & δ^{15} N)

Acknowledgements

- The City of Bloomington, Rick Twait
- Geologic Society of America
- Illinois Groundwater Association
- The Illinois Water Resources Center

References

- Delhon, P., Gojon, A., Tillard, P., and Passama, L., 1996, Diurnal regulation of NO–3 uptake in soybean plants IV. Dependence on current photosynthesis and sugar availability to the roots: Journal of Experimental Botany, v. 47, no. 7, p. 893-900.
- Ribas, D., Calderer, M., Martí, V., and Rovira, M., 2015, Effect of different seasonal conditions on the potential of wetland soils for groundwater denitrification: Desalination and Water Treatment, v. 53, no. 4, p. 994-1000.
- Stanford, G., Dzienia, S., and Vander Pol, R. A., 1975, Effect of Temperature on Denitrification Rate in Soils1: Soil Science Society of America Journal, v. 39, no. 5, p. 867-870.
- EPA Standard. https://www.epa.gov/ground-water-and-drinking-water/table-regulated-drinking-water-contaminants#Inorganic
- Eutrophication Image. https://iboess.wikispaces.com/5.4+Eutrophication
- Fertilizer application Image. http://www.christiancountyfs.com/agronomy/Pages/Custom-Application.aspx