Monitoring and response following the discovery of starry stonewort (*Nitellopsis obtusa*) in Wisconsin

Illinois Lake Management Association Conference

March 22-24, 2018

Bloomington, IL

Michelle Nault
AIS Monitoring & Response Specialist
Wisconsin Department of Natural Resources

Photo: Paul Skawinski

What is starry stonewort?

- Starry stonewort (*Nitellopsis obtusa*) is a member of the Characeae family.
- Characeae are green algae that can range in size from centimeters to meters, and are found throughout the world.
- Not a vascular plant like most our aquatic plant species.

Native Range

- Native to Europe and Asia
- Endangered species in the United Kingdom and Japan

Non-Native Range

- First documented in St. Lawrence River in 1970s;
 likely transported via international ballast water
- Documented in lower Michigan inland lakes in the mid-2000s.
- First documented in southeast Wisconsin (Waukesha Co.) in September 2014.
- Currently known from Indiana, Michigan (Lower), Minnesota, New York, Ohio, Pennsylvania, Vermont, Wisconsin, and Ontario, Canada.

Starry stonewort distribution

Ecology & Habitat

- Macroalgae species that can grow up to ~7 ft tall
- Anchored to the sediments with clear filaments called rhizoids, which resemble fishing line
- Can persist under the ice in St. Lawrence River
- In Detroit River, first appears in July with peak biomass in September, and declines beginning in November
- Occupies a broad range of habitats
- Occurs in lakes, ponds, and slow-moving water bodies
- Tolerant of low light conditions

Reproduction & Dispersal

- Fragmentation of the stem
- Specialized structures called bulbils
 - white, star-shaped and less than 1/3-inch (~1 cm)
- Only male starry stonewort has been found in North America
 - No sexual reproduction
- Primarily moved by boats, trailers, & anchors
- Waterfowl not believed to be source of dispersal due to lack of sexual reproduction (zygotes)

Impacts

- Impacts of starry stonewort are largely unknown primarily anecdotal and not science based
- May outcompete native plants, alter fish spawning habitat, and become a navigational nuisance

algae) of life sustaining nutrients.

preventing the re-suspension of bottom sediments and depriving native phytoplankton (various species of native

First Discovery of SSW in Wisconsin

 WDNR staff first discovered starry stonewort in September 2014 while conducting an aquatic plant point-intercept (PI) survey out on Little Muskego Lake, Waukesha Co.

Verified by WDNR and the New York Botanical

Garden

Monitoring Approach

- Regional SSW Monitoring (Rapid Assessment)
 - Targeted monitoring effort in southeast WI waterbodies around Little Muskego Lake
 - Monitoring consisted of rake tosses at boat launches, shoreline meanders, snorkeling, and lakewide AIS surveys
 - Some efforts were made to prioritize surveying waterbodies based on within lake characteristics (i.e. presence of other native Characeae, hardness)

Rapid Assessment – Southeast WI

Rapid Assessment - Southeast WI

➤ 2014: Little Muskego

> 2015: Big Muskego (Bass Bay), Long, Pike, Silver

> 2016: Green

> 2017: Wind

First Discovery of SSW in Lake Michigan/Green Bay

 Reported to WDNR in August 2016 by a lake management consultant conducting an aquatic plant PI survey out on the Sturgeon Bay Channel (Door Co.)

Verified by WDNR and the New York Botanical

Garden

Monitoring Approach

- Regional SSW Monitoring (Rapid Assessment)
 - WDNR conducted rapid assessment of public access locations surrounding the initial report, and along the Lake Michigan/Green Bay coastlines
 - Monitoring consisted of random rake tosses via shore off piers, docks, boat launches, marinas, beaches, etc.
 - Areas monitored were limited by what could be reached via shore monitoring
 - Communicated with other DNR programs (i.e.
 Fisheries, Law Enforcement, etc.) and partners (i.e.
 USFWS, Universities, etc.) to report any SSW observed

Green Bay/Lake Michigan Distribution

Green Bay/Lake Michigan Distribution

Phenology observations:

PI survey conducted by consultant in June 2016 did not observe SSW in Sturgeon Bay channel; SSW was observed in August 2016

Observed to be very dominant (monoculture) in September 2016 at Little Sturgeon Bay

Observed to be sparse in mid-June (2017) at same locations

Observed to be very dominant (monoculture) in August 2017

Statewide SSW Distribution

Monitoring Approach

- Lakewide SSW Monitoring
 - Aquatic plant point-intercept (PI) surveys conducted on an annual basis on the majority of verified SSW lakes
 - Standardized PI methodology allows for quantitative data collection
 - PI data used to look at plant community changes over time within a lake, as well as changes amongst different lakes
 - PI methodology is relatively easy to implement and provides statistically robust geolocated data
 - Data collected on SSW as well as native plant community

Lakewide SSW Monitoring

Lakewide SSW Monitoring

- Lakewide SSW Monitoring
 - SSW littoral % frequency of occurrence has ranged from 0 – 40%.
 - Mean: 9.5%; Median: 3.1%

Monitoring Approach

- Within Lake SSW Monitoring
 - Modified aquatic plant point-intercept (PI) surveys being conducted pre/post treatment on areas targeted for management
 - Reference plots without active management also established when feasible
 - PI data can be used to look at plant community changes over time within a treatment area, as well as changes amongst different treatments
 - Data collected on SSW as well as native plant community
 - Biomass collection also being implemented in scenarios where the PI method is not feasible

Monitoring Approach

		Date(s)			Treatment	% SSW Change
Lake	County	Treated	Product(s)	Rate(s)	area	(Pre vs. Post)*
Little Muskego	Waukesha	06/29/2016	Copper	0.5 ppm	2.4 acres	-12%
Long	Racine	06/08/2016	Copper	0.8ppm	2.7 acres	+27%
		06/29/2016	Copper + Hydrothol	0.8 ppm + 0.29 ppm	2.7 acres	
		06/16/2016	Copper + Flumioxazin	0.83 ppm + 0.15 ppm	1.0 acres	+57%
		06/26/2016	Copper + Diquat	0.83 ppm + 0.35 ppm	0.74 acres	
Big Muskego	Waukesha	09/24/2015	Copper + Hydrothol	0.8 ppm + 0.17 ppm	1.5 acres	-9%
		06/27/2016	Copper + Hydrothol	0.8 ppm + 0.17 ppm	1.5 acres	
		06/27/2016	Copper + Hydrothol	0.8 ppm + 0.17 ppm	1.3 acres	+33%
		09/24/2015	Flumioxazin	0.2 ppm	0.75 acres	+89%
		06/27/2016	Copper	0.4 ppm	0.75 acres	

^{*} Little Muskego and Long evaluated % frequency of occurrence; Big Muskego evaluated biomass. Bold indicates a statistically significant change

Future Monitoring

- Continue detection monitoring for SSW on lakes in close proximity to established populations, as well as other high-use waterbodies.
- Integrate available ecological modelling and invasion risk data to prioritize monitoring locations.
- Monitoring will be collaboratively conducted by WDNR staff, county partners, consultants, regional agencies, and volunteers.
- Long-term monitoring (PI surveys) is anticipated to occur on lakes with established SSW.

Management Options

- Management of starry stonewort has been largely unsuccessful in other states
- Chemical herbicide treatments (i.e. copper sulfate, hydrothol)
 - may provide temporary nuisance relief or biomass reduuction, but does not kill the entire plant
 - generally non-selective and may impact native species
- Physical control
 - hand-removal, DASH, dredging, mechanical harvesting
- Drawdown and/or freezing?
- No known biocontrol methods
- "Wait and see"
- Eradication is likely not a realistic goal

Outreach/Education

- Local/Regional
 - AIS communication protocol
 - Public meetings
 - CLMN/volunteers
 - WDNR has issued 6 rapid response grants, and 4 CBCW grants
- Statewide
 - Clean Boats, Clean Waters (CBCW)
 - Traditional media coverage
 - Targeted outreach events:
 - Drain campaign, July 4th blitz,
 waterfowl hunter outreach, etc.

- Related to many native macroalgae
 - in Wisconsin (& the Midwest)
 - Chara (10+ species)
 - Nitella (9+ species)
 - Tolypella (2 species)
 - Lychnothamnus (1 species)
- Can be difficult to distinguish non-native starry stonewort from these native species

Large compared to most of its native relatives

Starry stonewort

Nitellopsis obtusa Chara contraria Chara globularis Nitella flexilis

Smooth stem – no bumps or ridges

Starry stonewort

Nitellopsis obtusa

Chara contraria

Starry stonewort

Nitellopsis obtusa

Branchlet has a short uneven bract coming off the side

Nitella mucronata

Branchlet divides into equal-length parts

 Starry stonewort produces distinct starshaped bulbils

Nitellopsis obtusa (starry stonewort)

Photo: Paul Skawinski

Next steps

- Prevent the further spread of starry stonewort to inland lakes.
- Search for starry stonewort at nearby heavily used lakes.
- Assess the population at newly discovered sites to help guide appropriate management.
- Engage local stakeholders in management planning and education/outreach activities (i.e. CBCW).
- If management occurs, collect quantitative data to assess efficacy and longevity of control.
- Work with other states and partners to learn and adaptively manage starry stonewort.

Questions?

