SPATIAL PATTERNS OF HARMFUL ALGAL BLOOMS IN LAKE BLOOMINGTON AND EVERGREEN LAKE

Gare Ambrose-Igho

Dr. Catherine O'Reilly

Dr. Wondwosen Seyoum

Illinois State University

WHAT ARE ALGAL BLOOMS?

► A rapid increase in the concentration of algae in a water body

► Harmless and Harmful Algal Blooms

► Harmful algal blooms (HABs) produce toxins

WHY ARE THEY A PROBLEM?

HABs can cause harmful effects to;

- Freshwater taste and odor problems in drinking water, depletion of oxygen levels
- Humans and wildlife skin irritation, diarrhea, vomiting, stomach pains, death
- Aquatic life Create dead zones in the water and cause fish die off
- Industries that depend on clean water Raise treatment costs for drinking water

Lake Erie in Toledo

Monitoring Algal Blooms

Secchi Disk

Field Sampling

- It is expensive
- It is time consuming
- It is difficult for the whole lake area to be sampled

Remote Sensing

It is inexpensive

Less time consuming

More lake areas can be sampled

Research Questions

- 1. What is the spread behavior of Algal Blooms in lakes?
 - ▶ I expect to see algal blooms spread from the edges of the lakes to the middle of the lake
- 2. What are the conditions that influence and facilitate spread?
 - Spread influenced by Nutrients and Temperature
- 3. What are the effects of Algal Blooms on water properties?
 - Water properties quality decrease with increasing algal bloom population

Objectives

- ▶ To predict algal blooms spatial patterns using remote sensing
- ▶ To understand conditions that influence and facilitate this spread
- To determine the effects of algal blooms on water properties

Study Site

The study area for this project is Lake Bloomington and Evergreen Lake.

evergreen Lake- 15 miles North of Bloomington IL. 925 acres. Average depth of 19.7'. Maximum depth is 50ft

LAKE BLOOMINGTON – 15 miles North of Bloomington IL. 635 acres and 18.5 miles of shoreline. Average depth is 14.5ft

Methods

Field and historical water quality data analysis

Remote Sensing

Statistical Analysis

Field Sampling

EXO SONDE

Sonde with Probe Guard and Calibration Cup

EXO Sondes

EXO Smart Sensors

Remote Sensing

Collection and interpretation of information about an object without being in physical contact with the object

Landsat 8

Operational Land Imager (OLI) Thermal Infrared Sensor (TIRS)

Spectral Resolution				
Band	Band Name	Spectral range (nm)	Use Of Data	Resolution
1	New Deep Blue	433-453	Aerosol/Coastal zone	3om
2	Blue	450-515	Pigments/scatter/Coastal	3om (TM heritage Bands)
3	Green	525-600	Pigments/Coastal	
4	Red	630-680	Pigments/Coastal	
5	NIR	845-885	Foliage/Coastal	
6	SWIR ₂	1560-1660	Foliage	
7	SWIR ₃	2100-2300	Minerals/Litter/no scatter	
8	PAN	500-680	Image sharpening	15 m
9	SWIR	1360-1390	Cirrus Cloud Detection	30 m
10	TIRS1	10060- 11190	Surface Temperature	100*(30)
11	TIRS2	11500-12510		100*(30)

Overpass time: 16 days

Flow chart For Methods

Preliminary Test

Path No - 23
Row No - 32
12 images in total for the time frame
9 used

These Images have been altered to appear brighter

Lake Bloomington

Evergreen Lake

Preliminary Conclusions

- Raw, unprocessed remote sensing data suggests that
 - ► Lake Bloomington has a lot of spatial variation
 - Evergreen Lake has less spatial variation but shows a seasonal trend.
- These patterns are generally similar to what is seen in the Volunteer Lake Monitoring Program Secchi disk data.
- Potential for use of remote sensing exists

Next steps

- Field Sampling in the summer 2018 to create relationships between remote sensing and chlorophyll, Secchi, turbidity
- Use of reflectance values
- Other processing approaches
- Band ratios
- Adding up bands

Thank you....

Questions?