2013 Harmful Algae Bloom Pilot Project

Mike Adam
847-377-8002
madam@lakecountyil.gov

World Health Organization (WHO) Guidance Values

Relative Probability of Acute Health Effects
(Advisory Level)

Low	<10	$<20,000$
Moderate	$10-20$	$20,000-100,000$
High	$20-2,000$	$100,000-10,000,0$ Very High
2,000	$>10,000,000$	

Very High $\quad>2,000 \quad>10,000,000$

Microcystin
-LR (ug/L)

10-20
20-2,000

Total
Cyanobacteria
(cells/mL)
$<20,000$
20,000-100,000
100,000-10,000,0 00

HAB Toxin Testing

- Abraxis
- Microcystin Strip test
* One of many potential toxins
* Limited use
- Enzyme-Linked ImmunoSorbent Assay (ELISA) test
* If >10 ppb, then sent to Iowa DNR

Sample Handling / Analysis

- ALL Routine Samples to Iowa DNR

Quantitative analysis for for total microcystins/ nodularins (ADDA) using ELISA

BLOOM Samples

1. Strip Test - qualitative test

$$
\begin{array}{cc}
\text { ND, } \quad 1-10 \mu \mathrm{~g} / \mathrm{L}, & >10 \mu \mathrm{~g} / \mathrm{L} \\
\text { 2. If }>10 \mu \mathrm{~g} / \mathrm{L} & \\
& \text { Iowa DNR }
\end{array}
$$

2013 Statewide HAB Plan Overview Routine Pilot Study:
> Beaches: 30 Lake County inland lake beaches
> Fox River: DT-06, DT-22, DT-38

- 5X May - Oct
> Lakes: 10 ALMP lakes
- 5X April - Oct
- open water and public access sites

2013 HAB Program Event Response Sample Locations

Monthly Temperature Departure for Illinois

Monthly Precipitation Departure for Illinois for 2013

Microcystin Concentration ($\mu \mathrm{g} / \mathrm{L}$) Routine Fox River Samples - 2013

Microcystin Concentration ($\mu \mathrm{g} / \mathrm{L}$) Routine Lake Samples

Microcystin Concentration ($\mu \mathrm{g} / \mathrm{L}$) Event Response Samples - 2013

HAB Pilot Program - Lake County

○Event Monitoring

- Response from field staff, VLMP, and general public
- Routine Monitoring
-30 licensed swimming beaches
-Sampled bi-monthly
-E. coli bacteria

Tower Lake

Tower Lake

O

Tower Lake

- July 26, 2013
- Abraxis: 2.5 ppb
- July 29, 2013
- Abraxis: 5.0 ppb
- BG estimate: 20,000 cells
- ELISA: 8.23 ppb
- Anabaena sp.

Lake Barrington

	Beach		
	Abraxis (ppb)	BG Probe (cells)	$\begin{aligned} & \text { ELISA } \\ & \text { (ppb) } \end{aligned}$
3-Sep	>10	300,000	581
6-Sep	>10	300,000	266
$\begin{aligned} & 12- \\ & \text { Sep } \end{aligned}$	>10		134
$17-$	25		9

Lake Barrington

- September 17, 2013
- Lake
- Abraxis: >10 ppb
- ELISA: 259 ppb
- Morphology
- 90.3 acres
- 13 ft max depth
- Impoundment

Lake Barrington

- Microcystis and Anabaena
- Also, Aphanizomenon and Oscillatoria

Lake Barrington

Routine Beach Monitoring

HAB - Non Detect	$53 / 182$	29.12%
HAB > 0.15 ppb	$129 / 182$	70.88%

29.12\%
 70.88\%

HAB - Non Detect

- HAB > 0.15 ppb

Routine Beach Monitoring

HAB 0.15-9.9 ppb	$117 / 182$	64.29%
HAB 10-19.99 ppb	$6 / 182$	3.30%
HAB >10 ppb	$12 / 182$	6.59%
HAB >20 ppb	$6 / 182$	3.30%

Routine Beach Monitoring

E. coli >235 cfu	$16 / 178$	8.99%
HAB >20 ppb	$6 / 178$	3.37%
E. coli $>235+$ HAB		
>0	$1 / 16$	6.25%
HAB $>20+$ E.coli <235	$5 / 6$	83.33%

Routine Beach Monitoring

Routine Beach Monitoring

- Fish Lake Beach - 2013
- No swim bans

Date	ELISA (ppb)	E.coli (MPN)
3-Jun	8.28	1
17-Jun	11.03	2
2-Jul	21.98	11
15-Jul	35.61	20
29-Jul	41.65	20
12-Aug	67.37	2

HABs and Lake Impairments

Lakes w/HAB >20 ppb	TN:TP	$\mathrm{TP}(\mathrm{mg} /$
Loch Lomond	6:1	0.295
Lake Louise	11:1	0.156
Lake Barrington*	16:1	0.060
Slocum Lake*	16:1	0.152
Tower Lake*	19:1	0.083
Island Lake*	20:1	0.121
Wooster Lake*	21:1	0.068
Fish Lake	23:1	0.096
Dunn's Lake	24:1	0.095
Channel Lake	27:1	0.036
Cedar Lake*	52:1	0.020
*assessed in 2013		

CDC Reporting \& Literature

- Recreational Water- Associated Disease Outbreaks United States, 2009- 2010, MMWR 63 (01); 6-10, J anuary 2014
- "Of 24 outbreaks associated with untreated recreational water venues (e.g., lakes), almost half (46\%) were confirmed or suspected to have been caused by cyanobacterial toxins."
- Dodds WK, Bouska WW, Eitzmann J L, et al. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ Sci Technol 2009;43:12-9
- "Closing or not using U.S. freshwater lakes for recreational activities because of hypereutrophication (i.e., HABs) is estimated to cost $\$ 0.37-1.16$ billion per year"

Acknowledgements

>J ason McCurdy, Iowa Department of Natural Resources Water Laboratory in Coralville, IA.
>Lake County Health Department Environmental Services staff
>Holly Hudson, Chicago Metropolitan Agency for Planning
>J oe Rush, J adEco, LLC
>Surface Water and Field Operations Section of the Illinois EPA
>Volunteers!!
http://www.epa.state.il.us/water/algal-bloom/index.html

