

Effects of Dams on Fish and Macroinvertebrate Assemblages in the Vermilion River

Ryan Hastings ${ }^{1}$, Scott Meiners ${ }^{1}$, Trent Thomas ${ }^{2}$ and Rob Colombo ${ }^{1}$

1. Eastern Illinois University 2 Illinois Department of Natural Resources

Dams

- Problems
- Lotic to Lentic Habitats
- Sediment Transportation
- Changes in Water Quality
- Physical Barriers
- Removal
- Reconnect Isolated Populations
- Increase Native, Endangered, and Threatened Species
- Reduce Invasive, Lentic species
- Improve Habitat \& Water Quality

- Natural Flow Regimes

Bio-Indicators

- Fish
- Long Lived Species
- Index of Biotic Integrity
- Dams as Physical Barriers
- Macroinvertebrates
- Short Lived Species
- Macroinvertebrate Biotic Index
- Dams Changing Environment

Location

- Vermilion River
- Tributary to the Wabash River
- Danville Dam

- North Fork

- Tributary to the Vermilion River
- Ellsworth Dam

Fish Sampling Methods

- Vermilion River
- DC Electrofishing (Fall/ Spring)
- Seine Pulls (Fall)
- Mini Fyke (Spring)
- North Fork
- DC Barge Shocking (Fall)
- DC Boat Electrofishing (Spring)
- Minifyke (Spring)

Habitat Assessment

- Ohio Qualitative Habitat Evaluation Index
- Quality Score
- Substrate abundance
- Average Velocity
- Water Quality
- Field - DO, Temperature, PH, Conductivity
- Laboratory - Solids, Nitrogen, Phosphorous, Ammonia

Macroinvertebrate Sampling

- Based from QHEI Outcome
- 20 Jab Protocol
- Specimens ID to Highest Level of Taxonomy
- Chironomids (sub family)

Photos By: Dave Petry (EIU)

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

Total Catch

- Fall 2012-6217
- Vermilion - 3771
- North Fork - 2446
- Spring 2013 2565
- Vermilion-1438
- North Fork - 1127

Impoundments - Fall

Impoundments - Spring

Fall 2012

Information Remaining (\%)

Fall 2012

Information Remaining (\%)

Fall 2012

Information Remaining (\%)

Spring 2013

Information Remaining (\%)

Conclusions

- Seasonal Shifts in Fish Assemblages
- Cluster Analysis Suggest Impacts of Dams are Distinct in Fall Season
- Continuous Sites are Less Similar in Spring
- Assessment of Impacts of Dams on Fish Assemblages Should Be Conducted at Base Flow

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

QHEI

Flow (m/s)

Simpsons (D) - Fish

Index of Biotic Integrity

Simpsons (D) - Macroinvertebrate

Macroinvertebrate Biotic Index

Conclusions

- Habitat \& Flow
- High Flow and QHEI Immediately Below Dams
- Decrease in Flow and QHEI in Pool Sites
- Highest QHEI Furthest Distance From Danville Dam (North Fork River Sites)
- Fish
- Highest Diversity and Biotic Index Below Immediately Below the Dams
- Lowest Diversity and Biotic Index Immediately Above the Dams
- Macroinvertebrates
- High Diversity and Index Immediately Below the Dams
- Average Diversity and Index Among Above Dam Sites

Objectives

- When to sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)
- Are Dams influencing Assemblages as Physical Barriers or by Altering the Environment

Fall

Spatial Structure - Fish

- Mantel Test Relate Physical Distance and
Environmental Distance (Sorensen's) to Compositional Distance (Sorensen's)
- No physical distance effect on fish assemblages
- ($\mathrm{t}=0.248, \mathrm{P}=0.104$)
- Significant effect of environment on fish assemblages

- $(\mathrm{t}=0.375, \mathrm{P}=0.002)$

Spatial Structure - Fish

- Partial Mantel Tests to Control for Distance and Environment
- Still no distance effect when controlling for environment
- $(\mathrm{t}=-0.001, \mathrm{P}=0.500)$.
- Still an effect of environment when controlling for distance
- $(\mathrm{t}=0.291, \mathrm{P}=0.039)$

Fish

- Clear Separation of Rivers
- Vermilion - Below Dam Sites and River Sites are Closely Related
- Vermilion - Pool Sites are Clustered
- North Fork - No Clustering of Sites
- High Compositional Variability
- PerMANOVA
- River, Location, River x Location
- Affected by Dams from Environmental Changes

Fall Macro RA FAmily

Axis 1

Spatial Structure Macroinvertebrates

- Mantel Test Relate Physical Distance and Environmental Distance (Sorensen's) to Compositional Distance (Sorensen's)
- Physical distance effect on macroinvertebrate assemblages
- (t=0.403, P=0.004)
- No affect of environment on macroinvertebrate assemblages
- ($\mathrm{t}=0.209, \mathrm{P}=0.089$)

Spatial Structure Macroinvertebrates

- Partial Mantel Tests to Control for Distance and Environment
- Still a distance effect when controlling for environment - ($\mathrm{t}=0.367, \mathrm{P}=0.011$).
- No affect of environment when controlling for distance - (t=-0.088, P=0.728)

Macroinvertebrates

- Sites are Separated in Relation Impoundments Downstream
- High Variability in the North Fork
- PerMANOVA
- River, River x Location
- Affected by Dams as Physical Barriers

Conclusions

- Seasonal Variability in Fish Assemblages
- Structure Disappears between Fall and Spring Seasons
- Effects of Dams: Sampled at Base Flow

Conclusions

- Habitat Quality
- Decrease in Habitat Quality Above the Dams
- Decrease in Flow Above the Dams
- Fish \& Macroinvertebrates
- Highest Diversity and Biotic Index Immediately Below the Dams
- Lowest Diversity and Biotic Index Immediately Above the Dams

Conclusions

- Clear Compositional Difference Between Rivers
- Sites Between Rivers
- Fish
- Affected by Environmental Changes Caused by the Dams
- Changes in Substrate Abundances and Flow
- Macroinvertebrates
- Affected by Dams as Physical Barriers
- Act as Barriers for Dispersal of Eggs and Larvae

Eastern Illinois University Fisheries Lab
Illinois Department of Natural Resources

Questions?

