

Effects of Dams on Fish and Macroinvertebrate Assemblages in the Vermilion River

Ryan Hastings ¹, Scott Meiners ¹, Trent Thomas ² and Rob Colombo ¹

1. Eastern Illinois University 2 Illinois Department of Natural Resources

Dams

Problems

- Lotic to Lentic Habitats
- Sediment Transportation
- Changes in Water Quality
- Physical Barriers

Removal

- Reconnect Isolated Populations
- Increase Native, Endangered, and Threatened Species
- Reduce Invasive, Lentic species
- Improve Habitat & Water Quality
- Natural Flow Regimes

Bio-Indicators

Fish

- Long Lived Species
- Index of Biotic Integrity
- Dams as Physical Barriers
- Macroinvertebrates
 - Short Lived Species
 - Macroinvertebrate Biotic Index
 - Dams Changing Environment

http://www.waterbugkey.vcsu.edu/php/familydetail.php? idnum=8&f=Potomanthidae&Is=Iarvae

Vermilion River

- Tributary to the Wabash River
- Danville Dam

North Fork

- Tributary to the Vermilion River
- Ellsworth Dam

http://www.dnr.illinois.gov/WaterResources/Pages/safetyAtDams.aspx

Fish Sampling Methods

Vermilion River

- DC Electrofishing (Fall/ Spring)
- Seine Pulls (Fall)
- Mini Fyke (Spring)

North Fork

- DC Barge Shocking (Fall)
- DC Boat Electrofishing (Spring)
- Minifyke (Spring)

Habitat Assessment

- Ohio Qualitative Habitat Evaluation Index
 - Quality Score
 - Substrate abundance
- Average Velocity
- Water Quality
 - Field DO, Temperature, PH, Conductivity
 - Laboratory Solids, Nitrogen, Phosphorous, Ammonia

Macroinvertebrate Sampling

- Based from QHEI Outcome
- > 20 Jab Protocol
- Specimens ID to Highest Level of Taxonomy
 - Chironomids (sub family)

Photos By: Dave Petry (EIU)

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

Total Catch

Fall 2012 – 6217

- Vermilion 3771
- North Fork 2446
- Spring 2013 –
 2565
 - Vermilion -1438
 - North Fork 1127

Impoundments - Fall

Fall 2012

Fall 2012

Fall 2012

Spring 2013

- Seasonal Shifts in Fish Assemblages
- Cluster Analysis Suggest Impacts of Dams are Distinct in Fall Season
- Continuous Sites are Less Similar in Spring
- Assessment of Impacts of Dams on Fish
 Assemblages Should Be Conducted at Base Flow

Objectives

- When to Sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)

Flow (m/s)

Simpsons (D) - Macroinvertebrate

Macroinvertebrate Biotic Index

- Habitat & Flow
 - High Flow and QHEI Immediately Below Dams
 - Decrease in Flow and QHEI in Pool Sites
 - Highest QHEI Furthest Distance From Danville Dam (North Fork River Sites)
- Fish
 - Highest Diversity and Biotic Index Below Immediately Below the Dams
 - Lowest Diversity and Biotic Index Immediately Above the Dams
- Macroinvertebrates

- High Diversity and Index Immediately Below the Dams
- Average Diversity and Index Among Above Dam Sites

Objectives

- When to sample Dam Effects (Seasonal)
- Habitat Quality, Diversity, and Biotic Index (Base Flow)
- Spatial Structure of Fish and Macroinvertebrate Assemblages (Base Flow)
 - Are Dams influencing Assemblages as Physical Barriers or by Altering the Environment

Spatial Structure - Fish

- Mantel Test Relate Physical Distance and Environmental Distance (Sorensen's) to Compositional Distance (Sorensen's)
 - No physical distance effect on fish assemblages
 - (t=0.248, P=0.104)
 - Significant effect of environment on fish assemblages
 - (t=0.375, P=0.002)

Spatial Structure - Fish

- Partial Mantel Tests to Control for Distance and Environment
 - Still no distance effect when controlling for environment
 - (t=-0.001, P=0.500).
 - Still an effect of environment when controlling for distance
 - (t=0.291, P=0.039)

Fish

- Clear Separation of Rivers
- Vermilion Below Dam Sites and River Sites are Closely Related
- Vermilion Pool Sites are Clustered
- North Fork No Clustering of Sites
 - High Compositional Variability
- PerMANOVA
 - River, Location, River x Location
- Affected by Dams from Environmental Changes

Spatial Structure -Macroinvertebrates

- Mantel Test Relate Physical Distance and Environmental Distance (Sorensen's) to Compositional Distance (Sorensen's)
 - Physical distance effect on macroinvertebrate assemblages
 - (t=0.403, P=0.004)
 - No affect of environment on macroinvertebrate assemblages
 - (t=0.209, P=0.089)

Spatial Structure – Macroinvertebrates

- Partial Mantel Tests to Control for Distance and Environment
 - Still a distance effect when controlling for environment
 - (t=0.367, P=0.011).
 - No affect of environment when controlling for distance
 - (t=-0.088, P=0.728)

Macroinvertebrates

- Sites are Separated in Relation Impoundments Downstream
- High Variability in the North Fork
- PerMANOVA
 - River, River x Location
- Affected by Dams as Physical Barriers

- Seasonal Variability in Fish Assemblages
- Structure Disappears between Fall and Spring Seasons
- Effects of Dams: Sampled at Base Flow

- Habitat Quality
 - Decrease in Habitat Quality Above the Dams
 - Decrease in Flow Above the Dams
- Fish & Macroinvertebrates
 - Highest Diversity and Biotic Index Immediately Below the Dams
 - Lowest Diversity and Biotic Index Immediately Above the Dams

- Clear Compositional Difference Between Rivers
 - Sites Between Rivers
- Fish
 - Affected by Environmental Changes Caused by the Dams
 - Changes in Substrate Abundances and Flow
- Macroinvertebrates
 - Affected by Dams as Physical Barriers
 - Act as Barriers for Dispersal of Eggs and Larvae

Eastern Illinois University Fisheries Lab Illinois Department of Natural Resources

Questions?

