Lake Reclamation Beyond TMDLs:

Project Experience Demonstrating the Essential Need for Positive Controls on Internal Nutrient Loading and the Importance of Ecosystem Structure to Restore Water Quality

David Austin, P.E., Senior Ecologist – ESA, CLM - NALMS Global Technology Lead - Natural Treatment Systems, CH2M HILL

Outline

- Section 319(h) of CWA
- Three legged stool of lake/reservoir WQ reclamation
 - Ecosystem structure
 - ✓ Methylmercury
 - ✓ Internal nutrient loading
- Conclusions

Section 319(h) of CWA

"Lake protection and restoration activities are eligible for funding under Section 319(h) ...

However, Section 319 funds should not be used for in-lake work ...

...unless the sources of pollution have been addressed sufficiently to assure that the pollution being remediated will not recur."

- The 319 act calls in-lake work "palliative"
- Sometimes, it is
- We shall see, however, that it can be fundamental
- Watershed approaches alone are typically incapable of restoring lake water quality

Lake water quality reclamation stands on three legs

Non-degradation: TMDLs strong
Internal impairments: TMDLs weak
✓ Internal nutrient loading
✓ Ecosystem impairments
Integrated strategies necessary

Ecosystem structure and water quality

Water clarity and ecosystem structure

In the two zones shown, the TP concentration is equal inside and outside of exclosure

Riley Lake, Chanhassen, Minnesota Photo: Dave Florenziano Experiment: Sorenson and Bajer

Zone 2: turbid water: algae growth, lots of panfish

Ecological Controls on Water Clarity

But biomanipulation is deeply, deeply complex

Recent carp studies have opened another huge area of biomanipulation practice

Lake Wingra, Madison, Wiscosin Photo: Emily Seivers, UW-Madison Experiment: Lathrop et al

Carp and ecosystem change

- Start with clear water, submersed macrophyte stable state
- Carp destroy it, sending system to turbid, algae dominated stable state.
- Nutrient controls will fail to restore until carp population reduced to much less than 100 kg/ha (~100 lbs/ac)

- Carp removal Lake Susan, Chanhassen, MN 2009-2010
- Final removal in February 2010.
- About 90% of population removed
- Current population << 100 lbs/ac

Lake Susan, Chanhassen, MN: Carp Harvest Effect on Water Transparency

Managing carp

- Smart, very hardy, extremely fecund
- Standard fish surveys don't count them
- Need to know basic fisheries biology to manage
 - Carp sexually active to age 50 years
 - Very uneven recruitment. Why?
 - Lepomis populations eat ALL eggs, fry, and juveniles < 1"</p>
 - But not after winter fish kills
 - Carp must have access to winter fish kill lakes to recruit

Recipe for carp-free watershed

- Tag, track, net out to << 100 lbs/ac
- Install carp barrier to invasion
- Aerate fish kill lakes for 50 years

Photo: Dave Hanson

Carp management is a watershed-wide effort

Potamogeton crispus

- Grows under ice except in heavy early snowfall years
- Forms canopy on surface
- Shades out native plants
- •Complete senescence in late June
 - Massive putrescible load to lake
 - ~ 250 500 tons wet weight to Mitchell Lake, Eden Prairie, MN
 - ~ ~ 140 280 mg P m⁻² senescence loading
 - Senescence P spike + 40 100 µg/L

Internal nutrient loading

History of impairment matters: paleolimnology

How long does laissez-faire recovery take?

- Shallow lake (79 ac, max depth 11 ft)
- Sewage discharge stopped ~1970
- If watershed controls were work:
 - How long to effective?
 - How long after effective to work?
 - Is 50-100 years to goal good policy?

Sediment – water interactions I

Redox management in sediments

Monomethyl mercury (HgCH₃⁺)

Nitrate control of methyl mercury

JETT RUSIN

Effect of nitrate addition on phosphate

-I 2010 hypolimnion PO4, mg/L Round Lake hypolimnion PO₄ comparison 0.7 0.6 0.5 PO₄ , mg/L 0.4 0.3 0.2 0.1 00 0 5 20 30 50 70 80 90 95 99 10 Percent of PO_4 concenetrations less than or equal to indicated value

Summer hypolimnion PO4 2003, 2008, 2009, mg/L

Vadnais Aerators Installed

Summer 2010 Dissolved Oxygen Performance

Lake Vadnais - Aerator Operational

Pleasant Lake - Aerator NOT Operational

Summer 2010 ORP Performance

Vadnais Aerators Removed

What about the winter? Highly dynamic

Ice Preserving Aeration System - IPAS

Oxygen Performance

Lucy Redox Control

But aren't stormwater ponds just little lakes?

Conclusions

- The stool needs all three legs
- Ecosystem structure and internal loading profoundly affect water quality
 - Watershed only approach omits critical science
- Many technical opportunities to address the "forgotten legs"

