

Curse of the Creepy Crawlers...

•U of I Film Festival

RiverWatch

- •Created by IDNR 1995; taken over by Great Rivers R and E
- •Employs "trained" citizen scientists to sample stream biology
- •Creates a database of macroinvertebrate samples and metrics (MBI)
- •Tracks long term trends and regional distributions

Macroinvertebrates= See them without aid of a microscope in general 1 mm up to several hundred mm

Penny reference along with scale bars

Fun stuff and/or elaboration of taxa

- •Background materials designed to elaborate on the nature of the organisms being described. i.e.
- Rasping sucker+hirudin enzymeof leeches
- •Fish , frog, turtle leeches
- Leech brood sac
- Parasitic vs free living life style
- •Engulfing predators

Leeches are still used in some medical procedures to drain local blood accumulations

Adaptations to Flow

Reynolds numbers= measured resistance to flow; actually physically measured in some engineering studies

All stream organisms must be adapted to flow; method of adaptation will differ with life style

Free swimming

Clinging, mobile against substrate

Clinging but mobile

Figure 4.26: Heptageniidae larva, Lateral View.

Feeding Groups

•Collector/gatherers: detritivores FPOM

•Collector/filterers: filter and strain FPOM from water column

Parasites: live on or in other organisms (i.e. nematode worms)

•Piercers: pierce then suck body fluids (some leeche:

•Predators: capture prey and consume whole

•Scrapers: harvest rock algae, diatoms, and critters

•Shredders: herbivores and detritivores on whole live of dead tissue

Micro-Crustaceans: Amphipods and isopods

- •i.d. = Dorso-ventral vs. lateral flattening
- •Significance: freshwater and marine food webs (i.e. Lake Michigan) ubiquitous in streams and lakes
- •Taxa weight: Isopods indicative of high organic loading= taxa weighting; Amphipods higher quality waters
- Amphipod use as basic bioassay organism...i.e. chemical dose challenges (*Hyalla azteca*)
- •In Lake Michigan apparent competition with zebra mussels; Diporeia is critical element of fish food webs

>10,000 sq. m

+ mostly gone in 2009

- Colonize the bottom, bodies are high in oil content
- •Diporeia was significant food source (alewives, whitefish, sculpins)
- •Zebra and quagga mussels compete with amphipod for food
- •Zebra and quagga not a good prey species for fish
- •Atrazine, PCBs, others may play a role

Invasive species

Zebra mussel infestation on bottom of Jon boat in local inland lake

Fat mucket native mussel colonized by zebra mussels

Rocks in stream covered by zebra mussels a competitor with microcrustaceans

Assessing High Quality Stream Environments

•EPT Taxa = simple count of EPT taxa Ephemeroptera mayflies Plecoptera stoneflies Trichoptera caddisflies

- •MBI metric= sum of the taxa numbers * taxa weighting/total number of organisms
 - = lower numbers < 5.0 = high quality stream reaches
- •Simple diversity= total number of taxa
- Absence of exotics

Mayflies: Ephemeroptera

- •One of most common faunal elements
- Adult numbers can be so large that they can be tracked on radar
- Incomplete metamorphosis egg, nymph (larva), adult
- •Adults have 4 triangular wings (gracile)
- •Multiple life styles and habitats
- •Exceptionally important fish food
- •Nymphs = 3 caudal filament/
- distinguish from damselfly gills
- •Caudal filaments sensory + stabilization

Mayflies: Ephemeroptera II.....multiple mayfly families in Illinois

Torpedo mayflies

Swimming mayflies

Streamlined, active swimmers
High quality, fast moving stream
Low taxa indices (3,4)= good quality water
Poorer quality for some families (Siph.+ Baetids
Filter feeders and collector -gathers

Mayflies: Ephemeroptera III

Clinging mayflies

- Dorso-ventral flattening
- Abdominal gills
- Tarsal claws
- High quality fast flowing streams (generally but not always)
- Scrappers and collectors
- •Important fish food
- •Taxa Index= 3.5

Crawling Mayflies

- Actively move about
- Generally in quite waters
- Very small
- •Silty bottoms; depositional waters
- •Taxa Index= 5.5 (not as good as other mayfly families)
- Very, very common
- Scrappers and collectors
- Operculate (hidden/enclosed) gills

Mayflies: Ephemeroptera IV

- Soft sediment environments (i.e. Spring Creek)
- •Make boroughs; gills fan the borough
- Collector gathers
- •Hatches can generate 100's of thousands of mayflies; lake Erie radar signature
- •Tusks are used for burrowing
- •Taxa index= 5.0

Stoneflies Plecoptera (folded wings)

- lowest taxa index (best streams)
- predators or shredders
- 76 species (15 species gone; 13 are known from 5 or fewer localities)
- example of invertebrate E/T
- •winter stoneflies (dark coloration+antifreeze)
- 8 families in Illinois

Caddisflies Trichoptera (hair winged; refers to adult)

- most common
- •Stridulation for territories

- •Related to moths and butterflies
- •Spin silk to create either "nets" or houses made from different materials
- "Caddis" term from English clothing salesman
- •~ 18 different families in midwest
- •Wide variety of feeding groups
- •Complete metamorphosis

Caddisflies Trichoptera II Types of caddis fly cases

- Cases stuck together with silk
- •Complete metamorphosis w pupae (similar to moths and butterflies)

Types of caddisfly cases:

- None-free living
- Net-spinners
- Leaves, vegetation
- Twigs
- Stones
- Sand grains

Aquatic beetles Coleoptera

Riffle beetle adults and larvae

Water penny larvae

Whirligig beetles and larvae

Assorted aquatic beetle larvae Coleoptera II

Water penny larvae

Gyrinidae *Dineustus sp.* Whirligig beetle

Dragonflies and damselflies Odonata (7 families of dragonflies in Illinois)

- •Incomplete metamorphosis
- Nymphs not larvae
- •Instars with wings on final instar
- Extensible lower jaw (labium,)
- •Nymphs jet propelled; squirt water from their anus
- •Complex compound eyes with ommatidia (wide field of vision and detailed resolution)
- •PREDATORS

- •At least one web site claims that the jaws for the "monster" from Alien was modeled after the extensible jaw of the dragonfly.
- •Extensible jaw of dragonfly can be very fast= 1/100th of a second
- •Able to eat relatively large prey i.e. larva with minnow

Please note that dragonfly nymphs don't bite people....they simply aren't that tasty

Dragonflies and damselflies Odonata SubO. Zygoptera 3 families of damselflies

Narrow-winged damselfly Spread-winged damselfly

Middle gill filament

True flies Dipterans (two winged), bizarre, ubiquitous and biologically significant

The good

- Piercing predator
- Fast flowing streams
- •Feed on soft bodied prey
- •Taxa index=4.0 (very good)
- •Adults may feed on other insects
- •Adults=lookdown flies because of posture on substrates

The bad (always relative)

- Minnesota's monster
- Bite and look for blood
- Keystone species
- River blindness (17 million)
- Not as common in Illinois
- Generally good high flow streams

•Pupae C

Ouch!

The ugly

Bloodworm midge

- •Exceptionally important stream fauna
- Can dominate numbers
- •Blood worm adaptations
- •Important fish food and also prey for other mac's
- •Biting midges= piercing predators
- Diversity, stream #'s, stream biomass

Aquatic worms Oligochaeta (hair on each segment)

- Hair on each segment
- •Texture bottom sediments
- •Burrow into upper layer and keep it oxygenated

- •Archetypical signature below STP (i.e. sludge worms)
- •Hemoglobin for low DO environments
- •Burrows in sediments
- •Feed on detritus and other organics in sediment
- •Filter feeders
- •Densities of up to 8000/sq. m

Dobsonflies (Hellgrammites), alderflies, fish flies Megaloptera (large wings)

Taxa index= 5.5

Taxa index= 7.5

Taxa index= 7.5

- Dobsonfly has ventral gill tufts
- •Fishfly has caudal breathing tube
- Alderfly has terminal filament but no gills
- Strong mandibles
- Active predators
- Taxa index reflects differences in habitat
- Engulfer predator
- Dobsonfly found in fast water high quality streams

2 Warnings....

Watch out for giant alderflies

Sleep tight, don't let the bed bugs bite

Illinois RiverWatch

Lewis and Clark Community College Illinois RiverWatch Network c/o Nate Keener 5800 Godfrey Road Godfrey, Illinois 62035

nkeener@lc.edu
See training schedule sheets
for new volunteers