Monitoring Stormwater at a Permeable-Paver Parking Lot: A Student Laboratory at Elmhurst College

Dr. Eugene N. Losey
Professor and Chair of Chemistry

Ms. Anna Randazzo
Chemistry Major
Elmhurst College

Project Overview

- Permeable-Paver parking lot
- Adjacent to college residence hall (West Hall)
- Stormwater Monitoring and Collection
- Water Analysis
- Curricular Development
- A student laboratory

Why Are We Interested in This Project?

- Elmhurst College's Strategic Plan 2009-2014 includes our commitment to environmental sustainability.
 - "respect the environment and foster sustainability" (Stewardship)
 - "how does the College address environmental sustainability" (Issue Four)
- Elmhurst College actively addresses sustainability in our curricular offerings and in student/faculty research.
- This project fits well with our new LEED-certified (gold) residence hall (West Hall).
- This project provides a natural laboratory for study of relevant, real world environmental problems.
- This project can engage students and faculty at many levels.

Sustainability: A New Paradigm

(lessons learned from Sustainable Design)

- Sustainability: The Brundtland Report
 - development that meets the needs of the present without compromising the ability of future generations to meet their own needs
- Triple Bottom Line: Economy, Environment, Societies
- Genuine, high student interest
- Beyond environmental awareness
- Beyond regulation
- Beyond green

A New Paradigm

(lessons learned from Green Chemistry)

- Addresses hazards rather than controls (exposure)
- Is economically driven rather than economically draining
- Is non-regulatory
- Prevents problems before they occur
- Considers the full life cycle impacts at the design stage

Sustainability in the Curriculum

- First Year Seminar Courses
 - Local Choices, Global Effects
 - Water
 - Energy
- Environmental Issues Courses (CHM and BIO)
- Sustainability and Green Chemistry (nonmajors)
- Green Chemistry (majors)
- Environmental Ethics

Development of the Project

- West Hall planning (Wight & Company)
 - ENL as interim Dean
 - Permeable-paver parking lot
 - Bioswales and prairie plantings
- West Hall as a model of sustainability
 - LEED certification (eventually gold level)
 - Signage
 - Water collection & analysis: a student laboratory

West Hall Area as Student Laboratory

- All types and levels of students
 - Science majors (chemistry, biology)
 - First year students
 - Advanced students
 - Non-science majors
 - Secondary school students and teachers
 - Elementary students

Opportunities for Study

- Sustainability and green design (LEED)
- The system itself
- Rainfall measurement
- Water collection thresholds
- Water analysis
- Plant / soil studies and research

Water Analysis at Many Levels

- Test Strips
- Testing Kits
- Analytical Chemistry techniques
 - Wet Chemistry (e.g. titrations, standard curves)
- Instrumental Analysis
 - Spectrophotometry
 - Ion Selective electrochemistry
 - Atomic Absorption
 - Ion Conductivity

The Water Monitoring System (ISCO)

- Flow Module 2150 w/ Battery Module 2191
- Interface Module 2105
- Sampler, 24-bottle 6712
- pH/Temperature Probe 701
- Rain Gauge 674
- Flow Logger 4120
- Flow Link 5.1 Software
- Storm Box

Elmhurst College

Collection Basin

Data and Results

- Rainfall, Flow and Water Collection
- Water Analysis

Rainfall – One Month

Elmhurst Rain G. Flowlink 5

Flow - One Month

Elmhurst College Flowlink 5

Rain – 2 Day

Elmhurst Rain G. Flowlink 5

Flow – Two Days

Elmhurst College Flowlink 5

Rainfall, Flow and Water Collection

Date (2010)	Total Rainfall (m, in)	Flow/Sample Collection
7/6-7/7	0.019, 0.750	No
7/8-7/11	0.002, 0.078	No
7/11 - 7/13	0.011, 0.433	No
7/22-7/26	0.165, 6.50	Yes
8/2-8/3	0.045, 1.78	Yes
8/4-8/5	0.018, 0.820	Yes
8/13-8/14	0.009, 0.354	No
8/20-8/22	0.029, 1.150	Yes
9/1-9/2	0.014, 0.551*	No*
9/2-9/3	0.021, 0.827* (0.035. 1.378)**	Yes*
9/10-9/11	0.004, 0.157	No
* Two sta	arred (*) entries should l **Combined data.	pe combined.

Rainfall, Flow and Water Collection

Date (2010)	Total Rainfall (m, in)	Flow/Sample Collection
9/16-9/17	0.003, 0.118	No
9/18-9/19	0.004, 0.157	No
9/20-9/21	0.001, 0.039	No
9/24-9/25	0.006, 0.236	No
10/1-10/2	0.004, 0.157	No
10/2-10/3	0.003, 0.118	No
10/13 - 10/14	0.010, 0/394	No
10/23 - 10/24	0.003, 0.118	No
10/24 - 10/25	0.005, 0/197	No
10/26 - 10/27	0.008, 0.315	No
11/4-11/5	0.001, 0.039	No

Rainfall / Water Collection Results

- *Highest rainfall with no water collection:
 - 0.019 m, 0.75 in

- *Lowest rainfall with water collection:
 0.035 m, 1.38 in
- *Estimate of 'holding' capacity of the system:
 0.02 m 0.03 m (0.8 in 1.2 in)

Data and Results

- Rainfall, Flow and Water Collection
- Water Analysis

pH Data

• Rain: pH 5.6 – 6.0

- Water samples:
 - pH range 7.8 8.0 (after collection)
 - pH range at monitoring station 8.0 8.3

Rainwater: pH 7.5

Nitrate Analysis Methods

- Test Strips (Hach)
- Hach Method 8192 (Powder Pillows)
 - Cadmium Reduction
 - NitraVer6 / NitraVer 3
 - SM 4500 E
- Hach Method 8039
 - Cadmium Reduction
 - NitraVer 5
 - SM 4500 E

Nitrate Analysis Methods, contd

- Ultraviolet Screening Method (SM 4500 B)
- Nitrate Electrode Method (SM 4500 D)

Hach 8192 – Nitrate Reference Curve

UV Method – Nitrate Reference Curve

Nitrate UV Method

Electrode Method – NO₃ Reference Curve

Nitrate Electrode Method

Phosphate Analysis Methods

- Test Strips
- Hach Method 8048

Phosphate Reference Curve

Reference Curve 4

PhosVer3 (Ascorbic Acid) Method

Metals Analysis Method

- Atomic Absorbance for:
 - Zinc Zn
 - Copper Cu
 - Lead Pb

Zinc (AA) – Reference Curve

Copper (AA) – Reference Curve

Lead (AA) – Reference Curve

Results

Nitrate

Phosphate

Metals

Results – Nitrate Standard Solutions

	1 mg/mL Soln (Measured mg/L)	10 mg/mL Soln (Measured mg/L)
Hach Method 8192	1.32	9.4
Hach Method 8093	1.45	9.6
UV Spectrophotometric	0.96	
Nitrate Electrode	1.00	

Results - Nitrate Test Strips

 Test strips measure: 1 – 2 mg/L on all collected samples

Results – Water Samples Hach Method 8192

Bottle (6/8)	[Nitrate], mg/L
# 13	0.217
# 15	0.383
# 18	0.310

Results – Water Samples Hach Method 8093

Bottle (6/16)	[Nitrate], mg/L
# 13	1.5
# 15	1.0
# 18	1.7

Results – Water Samples UV Spectrophotometric Method

Bottle (9/3)	[Nitrate], mg/L
# 1	0.930
# 2	1.085
# 3	1.025
# 4	0.950
# 5	1.221
# 6	1.126
Rainwater	NR - excessive organic matter

Results – Water Samples Nitrate Electrode Method

Bottle	[Nitrate], mg/L
# 1, 2 (7/24)	3.12
# 3, 4, 5, 6 (7/24)	2.94
#1, 3, 5 (10/27)	3.27
# 2, 4, 6 (10/27)	3.10
Rainwater (10/27)	4.10

Results - Phosphate Test Strips

 Test strips measure: 0 - 5 mg/L on all collected samples

Results – Phosphate Method (Hach 8048)

Bottle (9/3)	[PO ₄ ³⁻], mg/L
# 1	0.30
# 2	0.97
# 3	xxx
# 4	0.21
# 5	xxx
# 6	xxx
1.0 mg/L standard	0.99

AA Analysis for Zn

Bottle (9/3)	[Zn], mg/L
# 1	0.189
# 2	0.134
# 3	0.103
# 4	0.106
# 5	0.182
# 6	0.174
Rainwater	0.374

AA Analysis for Cu and Pb

No measurable concentration by AA

Future Research

- Write curricular materials
- Introduce water collection/analysis in classes
- Refine sample collection / storage
- Refine water analyses
- Analysis of Ions by Ion Chromatography (SM 4110)
- Examine other test kits
- Extend to biological testing (e.g. BOD)
- Conduct plant studies at West Hall

Acknowledgements

- Dr. Michelle Applebee, Elmhurst College
- Amanda Andersen, Elmhurst College
- Jay Womack, WRD Environmental
- Gasvoda and Associates
- The Conservation Foundation (Grant 208074)
- DuPage County Stormwater Management
- Dr. Scholl Foundation (Grant 07-10098)
- DuPage Community Foundation
- Center for Scholarship and Teaching Elmhurst College

